A New Approach to Predict Cyclic Response and Fracture of Shear Links and Eccentrically Braced Frames
نویسندگان
چکیده
In eccentrically braced frames (EBFs) subjected to large lateral demands, inelastic actions are mostly concentrated in shear links. The links vary in size and, when employed in frames, are known to be subjected to combined tension/compression and shear stress states that influence their strength, low-cycle fatigue behavior, and fracture characteristics. Despite their significance as the main energy dissipation elements in a structure subjected to seismic demand, simulating their full response, including the number of cycles to failure, of these links as individual components, or when employed in full frames, is lacking. This is primarily because until recently, most low-cycle fatigue models did not allow link failures under complex stress states to be captured. In this study, by means of a well-established ultra-low cycle fatigue (ULCF) criterion, the behavior of these links is fully assessed. The focus is on short shear links since they are widely used in comparison to intermediate or long links. Results of the simulations are compared with their experimental equivalents and excellent comparisons are achieved, confirming the validity of the simulation methodology and providing, for the first time, a framework for simulating the ULCF behavior of shear links. The verified response predictionmethodology is then applied at the structural level, and non-linear pushover analysis on EBFs is conducted. Unlike the existing numerical approaches where failure is indicated through a prescriptive target performance, such as 5% interstory drift for collapse prevention, the pushover analysis is conducted until complete fracture of the links and failure of the system. Seismic design parameters, such as deign and elastic base shears as well as force reduction factors, are also determined based on the pushover curves. The results demonstrate that the proposed approach can reliably predict the performance of EBFs and can potentially be used in future design and analysis of such frames.
منابع مشابه
Seismic Behavior of Direct Displacement-based Designed Eccentrically Braced Frames
Direct Displacement-Based Design (DDBD) is a performence-based seismic design method that has been proposed and well developed over the past two decades to design RC frame structures, shear walls and bridges. In this method, the behavior of a multi-degree-of-freedom (MDOF) sysytem is approximaeted by an equivalent single-degree-of-freedom (SDOF) substitute structure. Although this method has be...
متن کاملSeismic Yield Displacement Profile in Steel Eccentrically Braced Frames
Displacement-based methods are recognized as appropriate approaches to reach the goals of performance-based seismic design method. In the direct displacement-based seismic design method, the seismic yield displacement is applied as one of the important design parameters. In this paper, a new relation is suggested to determine the lateral displacement pattern at first yielding of eccentrically b...
متن کاملStudy of Adding Cover—Plate Used For the Single Diagonal Eccentrically Braced Steel Frames
This paper suggested a new connection protocol, adding cover-plate between shear links and column, which was used to enhance moment and shear carrying capacity of beam, relax the restriction and assure the sufficiency development of plastic deformation of the link, and dissipate more earthquake energy. Considering the scale ratio of 1:3, the experimental data was achieved by a specimen under cy...
متن کاملNumerical study on the behavior of link-to-column connections in eccentrically braced frames
Geometry of eccentrically braced frames (EBFs) in some cases causes the connection of link beam to the column. The details of such conditions should be studied carefully due to the full plastic rotation in the link beam. In this research, the behavior of link-to-column connection is modeled and the failure modes are considered. Based on the previous researches shear link can exhibit better beha...
متن کاملProof-of-concept Testing and Finite Element Modelling of Self- Stabilizing Hybrid Rectangular Links for Eccentrically Braced Frames
This paper describes the design, testing, and finite element modeling, of a proofof-concept eccentrically braced frame specimen utilizing a hybrid rectangular shear link. The link is self-stabilizing and does not require lateral bracing, making it suitable for use in steel bridge piers where lateral bracing can be difficult to provide (building applications are possible as well). Equations used...
متن کامل